行业解决方案
深耕行业 创新价值中央企业
服务央企数智化转型第一品牌国资监管与投资控股
数智国资 新质发展装备与离散制造
数智融合 赋能高端制造流程制造
深化AI+赋能流程制造业,助燃新质生产力消费品
数智消费,赋能消费品行业企业数智化转型发展服务
AI+驱动服务行业数智企业创新发展交通与公用事业
数智赋能交通公用行业高质量发展建筑与地产
建数智引擎,产新质动能医药
以数智创新驱动医药行业高质量发展医疗
数智化技术赋能医疗机构高质量发展能源
以数智创新推动能源行业绿色低碳发展电信与广电
电信与广电行业M域首席服务商军工
军工企业的数智化首选政务
云聚公共管理智慧,助力政府数智化转型教育
数智化人才培养服务提供商金融
中国金融行业数智化解决方案领导者汽车
专注于汽车行业营销与后市场服务烟草
助力烟草行业数智化转型行业
深耕行业 创新价值中央企业
服务央企数智化转型第一品牌国资监管与投资控股
数智国资 新质发展装备与离散制造
数智融合 赋能高端制造流程制造
深化AI+赋能流程制造业,助燃新质生产力消费品
数智消费,赋能消费品行业企业数智化转型发展服务
AI+驱动服务行业数智企业创新发展交通与公用事业
数智赋能交通公用行业高质量发展建筑与地产
建数智引擎,产新质动能医药
以数智创新驱动医药行业高质量发展医疗
数智化技术赋能医疗机构高质量发展能源
以数智创新推动能源行业绿色低碳发展电信与广电
电信与广电行业M域首席服务商军工
军工企业的数智化首选政务
云聚公共管理智慧,助力政府数智化转型教育
数智化人才培养服务提供商金融
中国金融行业数智化解决方案领导者汽车
专注于汽车行业营销与后市场服务烟草
助力烟草行业数智化转型销售热线:
4006-600-577在当今技术迅速发展的时代,生成式人工智能与大模型正成为推动产业变革的重要力量。随着AI技术的不断成熟与普及,它的应用已从个人领域扩展至企业层面,广泛覆盖各行各业。那么,新技术究竟会给产业带来哪些积极地影响?它又将如何平稳落地到场景?近日,在用友主办的“2024全球商业创新大会”上,中国科学院院士、清华大学人工智能研究院名誉院长张钹发表了主题为《生成式人工智能时代的产业》的演讲。
会上,张钹院士从能力、应用、架构、趋势等几个维度,详尽阐述了学术界关于大模型的洞察与思考,全面剖析了大模型的演进路径,就该技术的应用前景、挑战及其在不同领域的实际应用展开了深入探讨。
01
大语言模型“三大能力”
与“一大缺陷”不容忽视
其中,生成式人工智能具备三大核心能力为:
01
第一,强大的语言生成能力,即在开领域生成多样性的、语义连贯的、类似人类的文本。这是大语言模型区别于其他计算机生成语言的灵魂和优势所在;
02
第二,强大的自然语言对话能力,即在开领域实现人机自然语言对话;
03
第三,强大的迁移能力,即在代理任务上训练一个模型,只需要少量数据和微调,就可以适配到下游任务中,从而凸显出大模型可举一反三的能力。
“正因具备上述优势与缺陷,产业在落地大模型应用时必须格外重视这些因素。”
——张钹院士
02
基础模型的三种落地方向
与之相反,涉及企业关键业务领域的大模型应用场景则是较难实现的,如自动驾驶或制造行业的定制化生产、质量控制等。因为这些核心业务对于技术的容错率较低,而可靠性、准确性要求更高。
那么,大模型的应用场景该如何落地到核心业务领域?技术提供商、产业界的机会在哪里?
张钹院士提出了落地通用基础模型的三种方向。
第一,面向各个行业的垂类大模型;
第二,在大模型的基础上打造产业应用;
第三,让大模型与其他技术、工具相结合,创造产业应用。
03
大模型的六种架构模式
找到了大模型的落地方向,那么让大模型真正落地,同时还能使其用起来安全、可信、可控,这是产业和企业普遍关注的话题。为此,张钹院士提出了基于大模型的六种架构模式。
第一,提示工程
在很多大模型设计的过程中,都会增加这一至关重要的中间环节。它可以提升模型的理解和响应能力,输出一个更令人满意的结果。
比如,当问及大模型9.11和9.9哪一个数大时,它会给出错误的答案。但是,当用户在提示了有小数点存在的情况后,大模型便会给出正确的结果。因此,提示工程是影响生成结果的关键因素。提示的质量直接决定了输出结果的准确性和质量。在实际应用中,如何优化提示内容成为提升生成式人工智能应用效果的重要手段。
第二,检索增强生成(RAG)
对于事实性的问题,为了提高生成内容的确定性,生成式人工智能需要结合检索功能,通过触发外部知识库检索机制,辅助大模型生成更加准确、详尽且具有针对性的答案。
第三,微调
在加入了领域知识和私有数据后,通过在特定领域进行微调,可以显著提高生成式人工智能的输出质量,使其更符合特定领域的需求。比如,大模型在进行了医疗专业知识训练后,它就可以完成执业医师资格考试,准确率可达90%以上。而且,在诊断推理的过程中,大模型也对结果做出合理的解释。
第四,知识图谱与向量数据库
将知识图谱与向量数据库结合使用,能够帮助生成式人工智能更好地理解和处理文本中的语义信息,可解决模型缺乏事实知识、幻觉和可解释性等诸多问题。在企业部署大模型时,通过建立向量数据库,并让它与文档数据库协同工作,从而提高生成结果的准确性。
第五,内部监测与控制
在加以人类控制后,大模型可检测出数据偏差和漂移,也可处理异常情况。同时,通过引入智能体强化学习,可以让大模型自我反应,帮助它完成感知、动作、学习的一体化,从而减少错误的发生。
第六,安全与治理
随着大模型的发展,安全、误用与滥用已经成为普遍问题,这里涉及政治标准、道德与伦理等问题。只有建立多层次的安全保障,推动治理体系落地,才能够确保大模型健康可持续性发展。目前,这是一个迫在眉睫的问题。
04
坚持大模型自主发展之路
推动应用创新与产业化进程
随着生成式人工智能的快速发展,业界也对其未来前景提出了质疑。针对这一业界普遍关注的问题,张钹院士解释道,生成式AI是人类发展史上的一次重大技术突破。为此,人类花费了几十年时间解决了人工智能领域中的三个关键技术问题——文本的语义向量表示、生成式预训练转换器、自监督学习。
其中,最关键的技术创新就在于文本的语义向量表示,它实现了从信息形式的处理到信息内容处理的跨越。
“这项技术真正意义在于它将语言问题转变为一个数学问题。原来,文本仅代表了一个个符号,符号是存在于离散空间的,这些很难用数学工具去解析。而现在,语言被翻译为向量,计算机根据向量就可以解析成语义,对信息的内容加以处理,从而帮助人类真正进入到人工智能时代!”
——张钹院士
基于对大模型原理的深入理解,张钹院士对第三代人工智能技术的发展抱有十足的信心。就目前来看,问题的关键点仍在于如何让它落地。
张钹院士认为,第三代人工智能的发展方向重点在于:第一,构建具备可解释与鲁棒(稳健)的AI理论与方法,消除人们心里产生的恐慌。其次,开发安全、可控、可信、可靠且可扩展的技术,从而驱动人工智能产业的繁荣发展。第三,推动AI的创新应用与产业化。这表明,AI技术的研究与开发不仅仅是学术上的突破,还需要与产业需求紧密结合,将技术创新转化为现实应用,从而带来经济效益和社会进步。
同时,他还提出了“知识驱动 + 数据驱动”的理念,通过整合知识、数据、算法和算力这四大要素,确保AI技术不仅具备强大的智能能力,还能够在多样化的应用场景中发挥稳定且长效的作用。
张钹院士强调,坚持中国自主发展之路,必须认识到知识驱动与数据驱动在第三代人工智能中的核心作用,充分结合和利用知识、数据、算法、算力等要素,从而驱动中国人工智能产业的繁荣发展。
在人工智能技术突飞猛进的今天,大模型正在各行各业中展现出巨大的潜力。同时,在这条充满挑战的征途上,只有通过不断提升大模型的安全性、可靠性和可控性,才能真正实现其广泛应用。
未来,我们不仅要关注技术本身的突破,更要思考如何将其与产业实际深度结合。唯有如此,每一家企业才能通过探索与挖掘,为自身的未来发展创造关键变量,让大模型为人类社会创造出更多的价值和机遇,迎接智能时代的全面到来。